

- 8. The diagram above of pressure P vesus volume V shows the expansion of 2.0 moles of monatomic ideal gas from state A to state B. As shown in the diagram, $P_A = P_B = 600 \text{ N/m}^2$, $V_A = 3.0 \text{ m}^3$, and $V_B = 9.0 \text{ m}^3$.
 - (a) i. Calculate the work done by the gas as it expands.
 - ii. Calculate the change in internal energy of the gas as it expands.
 - iii. Calculate the heat added to or removed from the gas during this expansion.
 - (b) The pressure is then reduced to 200 N/m² without changing the volume as the gas is taken from state B to state C. Locate state C on the graph, and draw a line or a curve to represent the process through which the gas changes from state B to state C.
 - (c) The gas is then compressed isothermally back to state A.
 - i. Draw a line or curve on the diagram to represent this process.
 - ii. Is heat added to or removed from the gas during this isothermal compression?
 Added to / Removed from Justify your answer.