

- 24. One mole of an ideal monatomic gas is taken through the cycle *abca* shown on the diagram above. State *a* has volume $V_0 = 0.01$ cubic meter and pressure 4.0×10^5 Pa, and state *b* has volume $V_b = 0.04$ cubic meter. The molar heat capacities for the gas are $C_p = 20.8$ J/mole K, and $C_v = 12.5$ J/mole K. Determine each of the following:
 - (a) The temperatures T_a , T_b , T_c for each of these states of the gas.
 - (b) Find the internal energy of the gas E (or "U" according to our text) for states a, b, and c.
 - (c) Find ΔE , the change in internal energy, for the entire cycle $a \rightarrow b \rightarrow c \rightarrow a$.
 - (d) The heat Q_{ca}
 - (e) The work W_{bc} done by the gas on its surroundings during process bc

For calculus scholars:

(f) The work done during the process $a \to b$. Is this work done on the gas or by the gas?

For non-calculus scholars: The net heat added in the entire cycle is 2500 J.

(g) Find the net work done during the entire cycle.

For all SPA Physics II scholars:

- (h) Is process $a \rightarrow b$ adiabatic or isothermic? Justify your claim.
- (i) If process $a \to b$ results in about 5500 J of work done by the gas, what is Q_{ab} ?
- (j) The efficiency of a Carnot engine that operates between the maximum and minimum temperatures in this cycle