
24. One mole of an ideal monatomic gas is taken through the cycle abca shown on the diagram above. State a has volume $V_{0}=0.01$ cubic meter and pressure $4.0 \times 10^{5} \mathrm{~Pa}$, and state b has volume $V_{b}=0.04$ cubic meter. The molar heat capacities for the gas are $C_{p}=20.8 \mathrm{~J} / \mathrm{mole} \mathrm{K}$, and $C_{v}=12.5 \mathrm{~J} / \mathrm{mole} \mathrm{K}$. Determine each of the following:
(a) The temperatures T_{a}, T_{b}, T_{c} for each of these states of the gas.
(b) Find the internal energy of the gas E (or " U " according to our text) for states a, b, and c.
(c) Find ΔE, the change in internal energy, for the entire cycle $a \rightarrow b \rightarrow c \rightarrow a$.
(d) The heat $Q_{c a}$
(e) The work $W_{b c}$ done by the gas on its surroundings during process $b c$

For calculus scholars:
(f) The work done during the process $a \rightarrow b$. Is this work done on the gas or by the gas?

For non-calculus scholars: The net heat added in the entire cycle is 2500 J .
(g) Find the net work done during the entire cycle.

For all SPA Physics II scholars:
(h) Is process $a \rightarrow b$ adiabatic or isothermic? Justify your claim.
(i) If process $a \rightarrow b$ results in about 5500 J of work done by the gas, what is $Q_{a b}$?
(j) The efficiency of a Carnot engine that operates between the maximum and minimum temperatures in this cycle

