Objectives for Physics 1

Chapter 6

- 1. Be able to describe what work is in terms of energy and systems.
- 2. Be able to calculate the amount of work done by one specified system on another by using $W = F\Delta x \cos \theta$. Also be able to define carefully what is meant by $F, \Delta x$, and $\cos \theta$.
- 3. Be able to use a plot of F_x vs x to calculate the change in energy of a system.
- 4. Be able to explain why $W = F\Delta x \cos \theta$ cannot be applied in practice in the case of friction forces. Also be able to explain what it *can* be used for.
- 5. Be able to determine an object's kinetic energy.
- 6. Be able to state the work-kinetic energy theorem and to explain why it is valid only for objects that can be modeled as particles but not for objects having internal structure involved with energy transfers.
- 7. Be able to determine the gravitational potential energy associated with an object and to attribute that energy to the gravitational field.
- 8. Be able to determine the force constant of a spring given a plot of F_{spring} vs x where x is the stretch or compression of the spring.
- 9. Be able to determine the force constant of an ideal spring when F_{spring} and x are available.
- 10. Be able to determine the energy stored in a spring by using a plot of F_{spring} vs x or in terms of $E_{spring} = \frac{1}{2}kx^2$.
- 11. Be able to describe what is meant by "mechanical energy."
- 12. Be able to describe what is meant by the "conservation of energy" and to use it in accounting for energy changes in systems.
- 13. Be able to determine the power involved in moving an object subject to a net force \mathbf{F} with velocity \mathbf{v} .
- 14. Be able to state the units for energy in the SI.