PHYSICS I SEMESTER 2 EXAM STUDY GUIDE

Chapter 5: Circular Motion

- Know that the acceleration of an object in uniform circular motion is "toward the center" of the circle, which is to say it is "centripetal."
- Know that the net force on an object in uniform circular motion is necessarily toward the center, too.
- Know that the net force on an object in uniform circular motion, which is centripetal, is $F_{\text {cent }}=\frac{m v^{2}}{r}$

1. An object moving in a circle at a constant speed has a net force that is
(a) in the direction the object is moving.
(b) toward the center of the circle.
(c) away from the center of the circle.
(d) zero.
2. An object moves in a circular path at a constant speed. Compare the direction of the object's velocity and acceleration vectors.
(a) Both vectors point in the same direction.
(b) The vectors point in opposite directions.
(c) The vectors are perpendicular.
(d) The question is meaningless, since the acceleration is zero.
3. Consider a particle moving with constant speed such that its acceleration of constant magnitude is always perpendicular to its velocity.
(a) It is moving in a straight line.
(b) It is moving in a circle.
(c) It is moving in a parabola.
(d) None of the above is definitely true all of the time.

Chapter 6: Energy and Work

Emphasize Chapter 6 Sections 4, 7, and 10.

What can we say about energy?

- Energy is the ability to cause change.
- Energy is always the property of some system. There is never "pure energy." All energy is just a property of some system or other.
- A system is the object or the collection of objects in which we are interested. Useful systems in physics usually include a specific set of material objects and the fields through which they interact. For example, you and the Earth can be considered a system. This system includes you, the Earth, and the gravitational field through which you and Earth interact.
- Energy can be transferred from one object (or system) to another. There are three common ways in which systems can gain or lose energy in a transfer: 1) working, 2) heating, and 3) radiation. Chapter 6 is about work. Work is the amount of energy a system gains or loses due to a force exerted by some agent over a certain distance.
- Energy is not a vector; it is a scalar. In this respect it is like its 'closest cousin,' mass. This means that we can do normal arithmetic with energy. We just add and subtract values as normal.
- Energy is never created or destroyed. Therefore, we say it is conserved.
- No matter where it is stored, energy is just energy. It doesn't change form or anything in its nature when it goes from the gravitational field to the ball, it just changes where it happens to be stored, and so we give it names that tell us what's storing the energy, whether it's a moving ball, a gravitational field, or a spring.

Where is energy stored, so far as we are concerned in this course?

There are three systems for which we can calculate stored energy, moving objects, gravitational fields, and springs.

- Moving objects have kinetic energy. $K E=\frac{1}{2} m v^{2}$
- Gravitational fields store energy: $G P E=m g h$

When a ball falls from the top of a building, it gains energy (KE) from the gravitational field that pulls it downward. Therefore, the gravitational field loses energy to the ball. No matter where it is stored, energy is just energy. How do we calculate GPE? You first have to decide where you want the "zero point" of h to be. Usually we just choose the zero point to be the lowest point in the motion of our object. But you can choose any point to be $h=0$ that you want. But you have to stick with that zero point for the rest of your solution to the problem.

- Springs store energy when they are stretched or compressed: $S P E=\frac{1}{2} k x^{2}$. " k " is the spring constant. You can find the spring constant for a given spring from a plot of the spring's force against its stretch (or compression), " x " like the one shown below. And there's another such graph further down in this study guide. The spring constant turns out to be the slope of this kind of graph. It tells us the number of Newtons of force are required to stretch or compress a spring one meter from its relaxed, equilibrium length.

Energy is measured in a unit called Joules in the SI system of units. That's what we will use. Energy is also measured in calories sometimes.

We have two ways to find how much energy is transferred through work done by an agent exerting a force on our object of interest:

- The first way is by evaluating the expression for the work done by one object or system on another:

$$
W=F \Delta x \cos \theta
$$

This expression tells us how much energy is gained or lost by the object that experiences the force. You need to know what F represents. It represents the force exerted by the agent (or system) acting on the object of interest. Δx is the change in position of the object of interest along its path while experiencing the force F. We deal with straight paths but not curved paths when we use $W=F \Delta x \cos \theta$ in this course. Calculus will enable you to deal with curved paths, but that's for another physics course.

- The second way we have to evaluate the work done on our object or system is by using a graph in which the force exerted by the agent acting on our object of interest is plotted as a function of the position of the object: In the graph shown below we see the force exerted by a spring on an object attached to the end of the spring. The work done as the spring changes its "stretch" turns out to be equal to the "area" under the plot. This area is shaded in the second plot for a 0.15 m stretch. This area is a triangle, so the area is found by $\frac{1}{2} b h$. In this plot the work done by the spring on our object turns out to be about 1.1 Joule. But whether it is +1.1 J or -1.1 J depends on whether the spring is stretched more or stretched less at the end of the process. We cannot determine that from the plot; the problem statement would have to tell you that. Then you would know if the spring gained or lost energy as it interacted with the object of interest.

- Find the force constant for the spring represented in the graphs above.
- Find how much energy is stored in the spring when it is stretched 0.15 m .
- Find how much energy is required to stretch the spring from $x=0.15 \mathrm{~m}$ to $x=0.25 \mathrm{~m}$.

Tracking energy of your object or system

$$
E_{1}+W=E_{2}
$$

- Evaluate the initial energy in your system, E_{1}

We evaluate E_{1} by adding up all the known initial energies in our system. These energies can be any or all of KE, GPE, or SPE.

- Evaluate the change in energy in your system, W

We find either $W=F \Delta x \cos \theta$ or the "area" of an $F v s \Delta x$ plot.

- Evaluate the final energy in your system, E_{2}

We evaluate E_{2} by adding up all the known final energies in our system. These energies can be any or all of KE, GPE, or SPE.

As a rule in Physics I, you will be able to find all the energies except for the unknown when you complete the accounting for energy in your system. Then you solve for the unknown in $E_{1}+W=E_{2}$.

- Suppose you nudge a 2 kg rock off a 100 m high cliff in Sedona. How fast will it be going just before it hits the ground 100 m below?
- Where is the location at which $y=0$?
- What is the GPE associated with the rock at the beginning of its free fall?
- What is the KE of the rock at the beginning of its free fall?
- What is the total energy in this system at the beginning of the free fall?
- What is the GPE associated with the rock just before impact with the ground?
- What is the KE of the rock just before impact with the ground?
- What is the total energy in this system just before impact?

Suppose a falling ball has 2 Joules of kinetic energy and, as it falls, the gravitational field does +3 Joules of work on the ball. The ball will then have 5 Joules of kinetic energy.

$$
2 \mathrm{~J}+3 \mathrm{~J}=5 \mathrm{~J}
$$

In symbols we write this as follows:

$$
E_{1}+W=E_{2}
$$

This just says that the total energy in a system to begin with, E_{1}, plus any energy added through working, adds up to the final energy of the system, E_{2}.

Suppose you throw a ball straight upward, giving it 10 Joules of kinetic energy. The gravitational field will do work on the ball, but this work will reduce the kinetic energy of the rising ball. Eventually the ball will stop rising and, for at an instant in time it will have no kinetic energy. That will happen when the gravitational field has reduced the ball's kinetic energy by 10 Joules. We say that the gravitational field has done negative work on the ball. We can see this from the arithmetic:

$$
\begin{gathered}
10 \mathrm{~J}+W=0 \mathrm{~J} \\
W=-10 \mathrm{~J}
\end{gathered}
$$

Starting from rest, this woman is pulling the crate with a 100 N force at an angle of 37° above horizontal. She pulls the crate 5 m and then stops.

- What is the change in kinetic energy of the crate, from start to finish?
- How much work did this woman do on the crate?
- Where is the energy that the woman lost through working on the crate?

Conservation of Energy

It turns out that the amount of energy in our universe does not change; it is said to be "conserved." The same thing can be true for small systems, too, just as long as there is no gain or loss of energy from or to the surroundings. For us, that means $W=0$.

In that case, $E_{1}+W=E_{2}$ becomes $E_{1}=E_{2}$, because $W=0$. So when energy is conserved as for a roller coaster car that has negligible friction, the KE and GPE always add up to the same total:
$E_{1}=E_{2}$ becomes $K E_{1}+G P E_{1}=K E_{2}+G P E_{2}$ or just $m g h_{1}+\frac{1}{2} m v_{1}^{2}=m g h_{2}+\frac{1}{2} m v_{2}^{2}$
This is a typical kind of problem in physics instruction, and there is one unknown in that equation as a rule. Study Chapter 6 Section 7 and its examples.

A qualitative illustration of what this is about is shown in the pendulum simulation at https://www.glowscript.org/\#/user/pgswack/folder/My_Programs/program/PendulumForces. This simulation shows energy bars that are associated with the energy stored in the only two relevant storehouses for energy, the pendulum bob (red bar) and the gravitational field (green bar). The total amount of energy that these two energy storehouses hold stays the same as it flows back and forth between the bob (kinetic energy) and the gravitational field (gravitational potential energy).

Power

Section 10 of Chapter 6 is about "power." Power is the rate that energy is transferred from one thing to another, so we measure it in Joules/second, which we call "Watts."
$P=\frac{W}{\Delta t}$ or, to be more general, $P=\frac{\Delta E}{\Delta t}$, or to be more accurate, $P=\frac{d E}{d t}$. We will stick to algebra, though. So no calculus. Study Section 10 up to equation (6-17).

1. A 0.2 kg apple is suspended on a tree branch 4 m above the ground. It falls to the ground.
(a) What gains energy and what loses energy while the apple falls?
(b) How much energy is lost from the gravitational field during the fall?
(c) How much energy is gained by the apple during the fall (before it hits the ground)?
(d) How much work did the gravitational field do on the apple during the fall?
(e) After the fall the apple rests on the ground. Where is the energy it gained during the fall?
2. A baseball pitcher throws a baseball $(m=142 \mathrm{~g})$ at $40 \mathrm{~m} / \mathrm{s}$.
(a) What is the kinetic energy of the baseball?
(b) From where did the baseball get this energy?
(c) How much work did the pitcher do on the baseball?
(d) From the beginning of the pitching motion until he released the baseball, the pitcher's hand moved 2 m forward. What was the average force exerted by the pitcher on the baseball during this pitch?

3. What is the force constant for this spring?
4. How much energy is needed to stretch this spring 0.1 m ?
5. How much work is required to stretch this spring 0.3 m ?
6. How much work is required to stretch this spring from 0.2 m to 0.4 m ?
7. A car with a mass of 2000 kg accelerates from rest to $20 \mathrm{~m} / \mathrm{s}$ in 10 seconds.
(a) What is the change in the kinetic energy of the car?
$\Delta \mathrm{KE}=$ \qquad
(b) What is the power delivered by the car's engine to the car during this time?
$P=$ \qquad
8. How much energy does a 100 W light bulb deliver to your home during one hour of operation?
9. A motor does 5,000 joules of work in 20 seconds. What is the power of the motor?
10. A wagon is pulled at a speed of 0.40 meters $/ \mathrm{sec}$ by a horse exerting an 1,800 -newton horizontal force. What is the power of this horse? \qquad
11. Suppose a force of 100 newtons is used to push an object a distance of 5 meters in 15 seconds. Find the work done and the power delivered for this situation.

Chapter 7: Momentum and Impulse

Emphasize Chapter 7 Sections 1, 2, 3, 4, and 6.

What can we say about linear momentum?

- Newton thought of momentum as the amount of motion associated with some moving object. The greater the speed, the greater the momentum. The greater the mass of the object, the greater the momentum.
$\mathbf{p}=m \mathbf{v}$
- Momentum is a vector quantity like velocity and force (and unlike mass or energy). The direction of the momentum of an object is the same as the direction of its velocity.

Changes in the momentum of an object

- Momentum of an object changes due to a force acting on that object over a period of time.
- The change in momentum delivered to an object by a force acting on that object over a period of time is called "impulse." Impulse is a vector quantity, naturally, because it is a change in momentum, which is a vector quantity.
- There are two ways to determine the impulse (aka "change in momentum") delivered to an object.
- One can calculate $\overline{\mathbf{F}} \Delta t$. That's the impulse, but you need to know the average force, $\overline{\mathbf{F}}$ and the amount of time this force acted. $\overline{\mathbf{F}} \Delta t=m \Delta \mathbf{v}$ Impulse is the same thing as the change in momentum, $\Delta \mathbf{p}$
- A second way to find the impulse is to calculate the "area" under a plot of F as a function of the elapsed time t. In the plot below I would estimate the number of boxes to be between 18 and 20 , and each box represents 0.02 Ns of momentum. So the impulse or change in momentum produced by this force on the object it affects is roughly 0.4 Ns , give or take a little bit.

elapsed time (s)
$m \mathbf{v}_{\mathbf{1}}+$ Impulse $=m \mathbf{v}_{\mathbf{1}}^{\prime}$ Here $\mathbf{v}_{\mathbf{1}}^{\prime}$ is the final velocity.

Collisions in one dimension

Momentum is conserved in systems that are not affected by a net external force (i.e. a net force exerted by something outside of the system).

Therefore, if the external net force is zero, the momentum of two objects before they collide with each other is the same as their total momentum after they collide:
$m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}$

The primes indicate final values (after the collision).

Classification of collisions

There are three classes of collisions, elastic, inelastic, and perfectly (or "completely") inelastic. You should be able to classify these three linked collisions and you should know what happens to any lost kinetic energy.
https://www.glowscript.org/\#/user/pgswack/folder/My_Programs/program/CollisionMIPa
https://www.glowscript.org/\#/user/pgswack/folder/My_Programs/program/CollisionMIPb
https://www.glowscript.org/\#/user/pgswack/folder/My_Programs/program/CollisionMIPc

1. A $3.0-\mathrm{kg}$ object moves to the right at $4.0 \mathrm{~m} / \mathrm{s}$. It collides in a perfectly inelastic collision with a 6.0 kg object moving to the left at $2.0 \mathrm{~m} / \mathrm{s}$.
(a) What is the final velocity of the combined objects?
(b) How much kinetic energy has been dissipated?
2. What is the SI unit of momentum?
(a) $\mathrm{N} ? \mathrm{~m}$
(b) N / s
(c) N?s
(d) N / m
3. When a cannon fires a cannonball, the cannon will recoil backward because the
(a) energy of the cannonball and cannon is conserved.
(b) momentum of the cannonball and cannon is conserved.
(c) energy of the cannon is greater than the energy of the cannonball.
(d) momentum of the cannon is greater than the energy of the cannonball.
4. A freight car moves along a frictionless level railroad track at constant speed. The car is open on top. A large load of coal is suddenly dumped into the car. What happens to the velocity of the car?
(a) It increases.
(b) It remains the same.
(c) It decreases.
(d) cannot be determined from the information given
5. A rubber ball and a lump of putty have equal mass. They are thrown with equal speed against a wall. The ball bounces back with
nearly the same speed with which it hit. The putty sticks to the wall. Which objects experiences the greater momentum change?
(a) the ball
(b) the putty
(c) Both experience the same momentum change.
6. The area under the curve on a Force versus time (F vs. t) graph represents
(a) impulse.
(b) momentum.
(c) work.
(d) kinetic energy.
7. A small car meshes with a large truck in a headon collision. Which of the following statements concerning the magnitude of the average collision force is correct?
(a) The truck experiences the greater average force.
(b) The small car experiences the greater average force.
(c) The small car and the truck experience the same average force.
(d) It is impossible to tell since the masses and velocities are not given.
8. Two objects collide and bounce off each other. Linear momentum
(a) is definitely conserved.
(b) is definitely not conserved.
(c) is conserved only if the collision is elastic.
(d) is conserved only if the environment is frictionless.
9. Two objects collide and stick together. Kinetic energy
(a) is definitely conserved.
(b) is definitely not conserved.
(c) is conserved only if the collision is elastic.
(d) is conserved only if the environment is frictionless.
10. In a game of pool, the white cue ball hits the $\# 5$ ball and stops, while the \#5 ball moves away with the same velocity as the cue ball had originally. The type of collision is
(a) elastic.
(b) inelastic.
(c) completely inelastic.
(d) any of the above, depending on the mass of the balls.
11. A $10.0-\mathrm{g}$ bullet moving at $300 \mathrm{~m} / \mathrm{s}$ is fired into a $1.00-\mathrm{kg}$ block at rest. The bullet emerges (the bullet does not get embedded in the block) with half of its original speed. What is the velocity of the block right after the collision?
(a) $1.50 \mathrm{~m} / \mathrm{s}$
(b) $2.97 \mathrm{~m} / \mathrm{s}$
(c) $3.00 \mathrm{~m} / \mathrm{s}$
(d) $273 \mathrm{~m} / \mathrm{s}$
12. A $2.0-\mathrm{kg}$ mass moves with a speed of $5.0 \mathrm{~m} / \mathrm{s}$. It collides head-on with a 3.0 kg mass at rest. If the collision is perfectly inelastic, what is the speed of the masses after the collision?
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $2.5 \mathrm{~m} / \mathrm{s}$
(c) $2.0 \mathrm{~m} / \mathrm{s}$
(d) 0 , since the collision is inelastic
13. State the law of conservation of momentum.

14. Standard tennis balls have a mass of 0.060 kg . A certain tennis ball has a velocity of $32 \mathrm{~m} / \mathrm{s}$ to the left when it is hit by a racket that exerts a force on the ball to the right that is shown by the graph above. Consider velocities and forces to the right to be positive and those to the left to be negative.
(a) What is the momentum of the tennis ball before it was hit by the racket?
(b) What is the change in momentum of the tennis ball due to the force exerted by the racket?
(c) What is the final momentum of the tennis ball after it has been hit by the racket?
(d) What is the final velocity of the tennis ball?

Chapter 8: Torque and Angular Momentum

Torques

Be able to sketch a force diagram for a bridge or similar object that is subject to forces, and from that diagram be able to write the net torque equation and then solve for any unknown.

Be able to calculate torques, given enough information to determine F, r. and $\sin \theta$.
Be able to find the net torque on an object such as the compound wheel in the Figure that accompanies Problem 24 on p 220 and like that below left.

If $m_{1}=100 \mathrm{~g}$ is hung at the 15 cm from the pivot, which is placed at the 50 cm mark of a meter stick. A second mass m_{2} causes the meter stick and m_{1} to balance when it is placed 40 cm away from the pivot (at the 90 cm mark). What is m_{2} ?

Use the fact that items in equilibrium are subject to zero net torque as well as zero net force in order to calculate unknown forces or positions at which forces are applied.

A person lays on a 4.0 kg plank that is lplaced on two scales 2.0 m apart. The center of mass of the person is 0.80 m from the scale on the right What is the mass of this person?

Conservation of angular momentum

Skaters, divers, and collapsing stars were the cast of characters for the conservation of angular momentum.
$I_{1} \omega_{1}=I_{2} \omega_{2}$

Waves and Sound

- What is a longitudinal wave? Give an example.
- What is a transverse wave? Give an example.

What can you find out from the next three plots about the waves they represent?

Chapter 12: Sound

Know these things about sound:

- The speed of sound in air
- The time it takes sound to travel 1 mile through air
- The type of wave: longitudinal or transverse
- The range of audible frequencies for people
- The Doppler Effect on frequencies and wavelengths
- for sources approaching you
- for sources receding from you

